三角函数诱导公式总结-天生赢家凯发k8国际

更新时间:2023-04-07 15:12:06

三角函数诱导公式是三角函数中的一个常用公式,下面总结了三角函数诱导公式,仅供大家参考。

三角函数诱导公式

1、任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

2、设α为任意角,π α的三角函数值与α的三角函数值之间的关系:

sin(π α)=-sinα

cos(π α)=-cosα

tan(π α)=tanα

cot(π α)=cotα

3、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

4、设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ α)=sinα(k∈z)

三角函数诱导公式总结

cos(2kπ α)=cosα(k∈z)

tan(2kπ α)=tanα(k∈z)

三角函数诱导公式总结

cot(2kπ α)=cotα(k∈z)

5、利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

6、π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2 α)=cosα

cos(π/2 α)=-sinα

tan(π/2 α)=-cotα

cot(π/2 α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2 α)=-cosα

cos(3π/2 α)=sinα

tan(3π/2 α)=-cotα

cot(3π/2 α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈z)

三角函数诱导公式口诀

三角函数诱导记忆口诀:“奇变偶不变,符号看象限”。

“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

三角函数诱导公式推导过程

1、sin(-a)=-sina

sin(-a)=sin(0-a)=sin0cosa-sinacos0=0-sina=-sina

2、cos(-a)=cosa

cos(-a)=cos(0-a)=cos0cosa sin0sina=cosa 0=cosa

3、sin(π/2-a)=cosa

sin(π/2-a)=sinπ/2cosa-sinacosπ/2=cosa-0=cosa

4、cos(π/2-a)=sina

5、sin(π/2 a)=cosa

6、cos(π/2 a)=-sina

7、sin(π-a)=sina

8、cos(π-a)=-cosa

9、sin(π a)=-sina

10、cos(π a)=-cosa

  • 姓名:
  • 专业:
  • 层次:
  • 电话:
  • 微信:
  • 备注:
热文榜单

网站地图